Search results for "manifold learning"
showing 9 items of 9 documents
PRINCIPAL POLYNOMIAL ANALYSIS
2014
© 2014 World Scientific Publishing Company. This paper presents a new framework for manifold learning based on a sequence of principal polynomials that capture the possibly nonlinear nature of the data. The proposed Principal Polynomial Analysis (PPA) generalizes PCA by modeling the directions of maximal variance by means of curves instead of straight lines. Contrarily to previous approaches PPA reduces to performing simple univariate regressions which makes it computationally feasible and robust. Moreover PPA shows a number of interesting analytical properties. First PPA is a volume preserving map which in turn guarantees the existence of the inverse. Second such an inverse can be obtained…
Nonlinear data description with Principal Polynomial Analysis
2012
Principal Component Analysis (PCA) has been widely used for manifold description and dimensionality reduction. Performance of PCA is however hampered when data exhibits nonlinear feature relations. In this work, we propose a new framework for manifold learning based on the use of a sequence of Principal Polynomials that capture the eventually nonlinear nature of the data. The proposed Principal Polynomial Analysis (PPA) is shown to generalize PCA. Unlike recently proposed nonlinear methods (e.g. spectral/kernel methods and projection pursuit techniques, neural networks), PPA features are easily interpretable and the method leads to a fully invertible transform, which is a desirable property…
Multi-temporal and Multi-source Remote Sensing Image Classification by Nonlinear Relative Normalization
2016
Remote sensing image classification exploiting multiple sensors is a very challenging problem: data from different modalities are affected by spectral distortions and mis-alignments of all kinds, and this hampers re-using models built for one image to be used successfully in other scenes. In order to adapt and transfer models across image acquisitions, one must be able to cope with datasets that are not co-registered, acquired under different illumination and atmospheric conditions, by different sensors, and with scarce ground references. Traditionally, methods based on histogram matching have been used. However, they fail when densities have very different shapes or when there is no corres…
Contribution à l’apprentissage de représentation de données à base de graphes avec application à la catégorisation d’images
2020
Graph-based Manifold Learning algorithms are regarded as a powerful technique for feature extraction and dimensionality reduction in Pattern Recogniton, Computer Vision and Machine Learning fields. These algorithms utilize sample information contained in the item-item similarity and weighted matrix to reveal the intrinstic geometric structure of manifold. It exhibits the low dimensional structure in the high dimensional data. This motivates me to develop Graph-based Manifold Learning techniques on Pattern Recognition, specially, application to image categorization. The experimental datasets of thesis correspond to several categories of public image datasets such as face datasets, indoor and…
Big high-dimensional data analysis with diffusion maps
2013
Knowledge discovery using diffusion maps
2013
Analysis of the Pre and Post-COVID-19 Lockdown Use of Smartphone Apps in Spain
2021
The global pandemic of COVID-19 has changed our daily habits and has undoubtedly affected our smartphone usage time. This paper attempts to characterize the changes in the time of use of smartphones and their applications between the pre-lockdown and post-lockdown periods in Spain, during the first COVID-19 confinement in 2020. This study analyzes data from 1940 participants, which was obtained both from a survey and from a tracking application installed on their smartphones. We propose manifold learning techniques such as clustering, to assess, both in a quantitative and in a qualitative way, the behavioral and social effects and implications of confinement in the Spanish population. We al…
Approximation of functions over manifolds : A Moving Least-Squares approach
2021
We present an algorithm for approximating a function defined over a $d$-dimensional manifold utilizing only noisy function values at locations sampled from the manifold with noise. To produce the approximation we do not require any knowledge regarding the manifold other than its dimension $d$. We use the Manifold Moving Least-Squares approach of (Sober and Levin 2016) to reconstruct the atlas of charts and the approximation is built on-top of those charts. The resulting approximant is shown to be a function defined over a neighborhood of a manifold, approximating the originally sampled manifold. In other words, given a new point, located near the manifold, the approximation can be evaluated…
Making nonlinear manifold learning models interpretable: The manifold grand tour
2015
Smooth nonlinear topographic maps of the data distribution to guide a Grand Tour visualisation.Prioritisation of data linear views that are most consistent with data structure in the maps.Useful visualisations that cannot be obtained by other more classical approaches. Dimensionality reduction is required to produce visualisations of high dimensional data. In this framework, one of the most straightforward approaches to visualising high dimensional data is based on reducing complexity and applying linear projections while tumbling the projection axes in a defined sequence which generates a Grand Tour of the data. We propose using smooth nonlinear topographic maps of the data distribution to…