Search results for "manifold learning"

showing 9 items of 9 documents

PRINCIPAL POLYNOMIAL ANALYSIS

2014

© 2014 World Scientific Publishing Company. This paper presents a new framework for manifold learning based on a sequence of principal polynomials that capture the possibly nonlinear nature of the data. The proposed Principal Polynomial Analysis (PPA) generalizes PCA by modeling the directions of maximal variance by means of curves instead of straight lines. Contrarily to previous approaches PPA reduces to performing simple univariate regressions which makes it computationally feasible and robust. Moreover PPA shows a number of interesting analytical properties. First PPA is a volume preserving map which in turn guarantees the existence of the inverse. Second such an inverse can be obtained…

FOS: Computer and information sciencesPolynomialComputer Networks and CommunicationsComputer scienceMachine Learning (stat.ML)02 engineering and technologyReduction (complexity)03 medical and health sciencessymbols.namesake0302 clinical medicineStatistics - Machine LearningArtificial Intelligence0202 electrical engineering electronic engineering information engineeringPrincipal Polynomial AnalysisPrincipal Component AnalysisMahalanobis distanceModels StatisticalCodingDimensionality reductionNonlinear dimensionality reductionGeneral MedicineClassificationDimensionality reductionManifold learningNonlinear DynamicsMetric (mathematics)Jacobian matrix and determinantsymbolsRegression Analysis020201 artificial intelligence & image processingNeural Networks ComputerAlgorithmAlgorithms030217 neurology & neurosurgeryCurse of dimensionalityInternational Journal of Neural Systems
researchProduct

Nonlinear data description with Principal Polynomial Analysis

2012

Principal Component Analysis (PCA) has been widely used for manifold description and dimensionality reduction. Performance of PCA is however hampered when data exhibits nonlinear feature relations. In this work, we propose a new framework for manifold learning based on the use of a sequence of Principal Polynomials that capture the eventually nonlinear nature of the data. The proposed Principal Polynomial Analysis (PPA) is shown to generalize PCA. Unlike recently proposed nonlinear methods (e.g. spectral/kernel methods and projection pursuit techniques, neural networks), PPA features are easily interpretable and the method leads to a fully invertible transform, which is a desirable property…

business.industryCodingDimensionality reductionNonlinear dimensionality reductionDiffusion mapSparse PCAComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONElastic mapPattern recognitionManifold LearningClassificationKernel principal component analysisComputingMethodologies_PATTERNRECOGNITIONPrincipal component analysisPrincipal Polynomial AnalysisArtificial intelligencePrincipal geodesic analysisbusinessDimensionality ReductionMathematics
researchProduct

Multi-temporal and Multi-source Remote Sensing Image Classification by Nonlinear Relative Normalization

2016

Remote sensing image classification exploiting multiple sensors is a very challenging problem: data from different modalities are affected by spectral distortions and mis-alignments of all kinds, and this hampers re-using models built for one image to be used successfully in other scenes. In order to adapt and transfer models across image acquisitions, one must be able to cope with datasets that are not co-registered, acquired under different illumination and atmospheric conditions, by different sensors, and with scarce ground references. Traditionally, methods based on histogram matching have been used. However, they fail when densities have very different shapes or when there is no corres…

Signal Processing (eess.SP)FOS: Computer and information sciences010504 meteorology & atmospheric sciencesHyperspectral imagingComputer Vision and Pattern Recognition (cs.CV)0211 other engineering and technologiesNormalization (image processing)Computer Science - Computer Vision and Pattern Recognition02 engineering and technology3107 Atomic and Molecular Physics and Optics01 natural sciencesLaboratory of Geo-information Science and Remote SensingComputer vision910 Geography & travelMathematicsDomain adaptationContextual image classificationImage and Video Processing (eess.IV)1903 Computers in Earth SciencesPE&RCClassificationAtomic and Molecular Physics and OpticsComputer Science ApplicationsKernel method10122 Institute of GeographyKernel (image processing)Feature extractionFeature extractionVery high resolutionGraph-based methods1706 Computer Science ApplicationsFOS: Electrical engineering electronic engineering information engineeringLaboratorium voor Geo-informatiekunde en Remote SensingComputers in Earth SciencesElectrical Engineering and Systems Science - Signal ProcessingEngineering (miscellaneous)021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingManifold alignmentbusiness.industryNonlinear dimensionality reductionHistogram matchingKernel methodsPattern recognitionElectrical Engineering and Systems Science - Image and Video ProcessingManifold learningArtificial intelligence2201 Engineering (miscellaneous)businessISPRS Journal of Photogrammetry and Remote Sensing
researchProduct

Contribution à l’apprentissage de représentation de données à base de graphes avec application à la catégorisation d’images

2020

Graph-based Manifold Learning algorithms are regarded as a powerful technique for feature extraction and dimensionality reduction in Pattern Recogniton, Computer Vision and Machine Learning fields. These algorithms utilize sample information contained in the item-item similarity and weighted matrix to reveal the intrinstic geometric structure of manifold. It exhibits the low dimensional structure in the high dimensional data. This motivates me to develop Graph-based Manifold Learning techniques on Pattern Recognition, specially, application to image categorization. The experimental datasets of thesis correspond to several categories of public image datasets such as face datasets, indoor and…

Représentation de données à base de graphesSemi supervised LearningReconnaissance de formesComputer Vision[INFO.INFO-OH]Computer Science [cs]/Other [cs.OH]Manifold LearningPattern Recognition[INFO.INFO-OH] Computer Science [cs]/Other [cs.OH]Machine LearningGraph based EmbeddingVision par ordinateurApprentissage de représentation de donnéesinformaticsApprentissage semi superviséinformáticaApprentissage machine
researchProduct

Big high-dimensional data analysis with diffusion maps

2013

koneoppiminendatabig datamanifold learningdata analysisalgoritmitdiffusion mapsanalyysimenetelmät
researchProduct

Knowledge discovery using diffusion maps

2013

knowledge discoveryskientometriikkaanalyysimenetelmätdata miningvalvontajärjestelmätanomaly detectionkoneoppiminentoiminnallinen magneettikuvausdatabig datamanifold learningalgoritmitdiffusion mapstiedonlouhintateollisuuskyberturvallisuusclusteringdimensionality reduction
researchProduct

Analysis of the Pre and Post-COVID-19 Lockdown Use of Smartphone Apps in Spain

2021

The global pandemic of COVID-19 has changed our daily habits and has undoubtedly affected our smartphone usage time. This paper attempts to characterize the changes in the time of use of smartphones and their applications between the pre-lockdown and post-lockdown periods in Spain, during the first COVID-19 confinement in 2020. This study analyzes data from 1940 participants, which was obtained both from a survey and from a tracking application installed on their smartphones. We propose manifold learning techniques such as clustering, to assess, both in a quantitative and in a qualitative way, the behavioral and social effects and implications of confinement in the Spanish population. We al…

TechnologyCoronavirus disease 2019 (COVID-19)QH301-705.5QC1-999media_common.quotation_subjectApplied psychology050801 communication & media studies050109 social psychologysmartphone use0508 media and communicationsmanifold learning0501 psychology and cognitive sciencesGeneral Materials ScienceBiology (General)Big Five personality traitsCluster analysisQD1-999InstrumentationPre and postmedia_commonFluid Flow and Transfer ProcessesTPhysicsProcess Chemistry and TechnologyAddiction05 social sciencesGeneral EngineeringCOVID-19Engineering (General). Civil engineering (General)Computer Science ApplicationsSpanish populationChemistrymachine learningSmartphone appTracking (education)TA1-2040PsychologyApplied Sciences
researchProduct

Approximation of functions over manifolds : A Moving Least-Squares approach

2021

We present an algorithm for approximating a function defined over a $d$-dimensional manifold utilizing only noisy function values at locations sampled from the manifold with noise. To produce the approximation we do not require any knowledge regarding the manifold other than its dimension $d$. We use the Manifold Moving Least-Squares approach of (Sober and Levin 2016) to reconstruct the atlas of charts and the approximation is built on-top of those charts. The resulting approximant is shown to be a function defined over a neighborhood of a manifold, approximating the originally sampled manifold. In other words, given a new point, located near the manifold, the approximation can be evaluated…

Computational Geometry (cs.CG)FOS: Computer and information sciencesComputer Science - Machine LearningClosed manifolddimension reductionMachine Learning (stat.ML)010103 numerical & computational mathematicsComplex dimensionTopology01 natural sciencesMachine Learning (cs.LG)Volume formComputer Science - GraphicsStatistics - Machine Learningmanifold learningApplied mathematics0101 mathematicsfunktiotMathematicsManifold alignmentAtlas (topology)Applied Mathematicshigh dimensional approximationManifoldGraphics (cs.GR)Statistical manifold010101 applied mathematicsregression over manifoldsComputational Mathematicsout-of-sample extensionComputer Science - Computational Geometrynumeerinen analyysimonistotapproksimointimoving least-squaresCenter manifold
researchProduct

Making nonlinear manifold learning models interpretable: The manifold grand tour

2015

Smooth nonlinear topographic maps of the data distribution to guide a Grand Tour visualisation.Prioritisation of data linear views that are most consistent with data structure in the maps.Useful visualisations that cannot be obtained by other more classical approaches. Dimensionality reduction is required to produce visualisations of high dimensional data. In this framework, one of the most straightforward approaches to visualising high dimensional data is based on reducing complexity and applying linear projections while tumbling the projection axes in a defined sequence which generates a Grand Tour of the data. We propose using smooth nonlinear topographic maps of the data distribution to…

Clustering high-dimensional dataQA75Nonlinear dimensionality reductionDiscriminative clusteringComputer scienceVisualització de la informaciócomputer.software_genreData visualizationProjection (mathematics)Information visualizationArtificial IntelligenceQA:Informàtica::Infografia [Àrees temàtiques de la UPC]business.industryData visualizationDimensionality reductionGrand tourGeneral EngineeringNonlinear dimensionality reductionTopographic mapData structureComputer Science ApplicationsVisualizationManifold learningData miningbusinesscomputerGenerative topographic mappingLinear projections
researchProduct